Publications
Peer-reviewed Publications
Ketz, A. C., Storm, D. J., & Samuel, M. D., 2019. Chronic wasting disease and implications
for cervid populations. CAB Reviews, 14(38):1-15(DOI: 10.1079/PAVSNNR201914038 )
Ketz, A. C., Johnson, T. L., Hooten, M. B. & Hobbs, N. T., 2019. A hierarchical Bayesian
nested multinomial approach for handling missing classification data. Ecology and Evolution, 9(6), 3130-3140(DOI: 10.1002/ecs2.1587 )
Ketz, A. C., Johnson, T. L., Monello, R. J., Mack, J., George, J. L., Kraft, B. R., Wild, M.
A., Hooten, M. B. & Hobbs, N. T., 2018. Estimating abundance of an open population with
an N -mixture model using auxiliary data on animal movements. Ecological Applications, 28(3):
816-825(DOI: 10.1002/eap.1692 )
Ketz, A. C., Johnson, T. L., Monello, R. J. & Hobbs, N. T., 2016. Informing management
with monitoring data: the value of Bayesian forecasting Ecosphere, 7(11)(DOI: 10.1002/ecs2.1587 )
In Prep
Ketz, A. C., Storm, D. J., Russell, R. E., Samuel, M. D. & Walsh, D. P., An integrated
population model incorporating dynamic spatial-temporal disease transmission.
Ketz, A. C., Storm, D. J. & Walsh, D. P., Bayesian integrated age-period survival modeling
for complete lifespan analysis
Ketz, A. C., Storm, D. J. & Walsh, D. P., Bayesian integrated age-period survival modeling
for complete lifespan analysis
Ketz, A. C., Storm, D. J. & Samuel, M. D., Implications of pathogen-mediated selection on
heterogeneous transmission and survival for cervids exposed to chronic wasting disease
Ketz, A. C., Storm, D. J. & Walsh, D. P., Using semi-supervised machine learning anomaly detection for prediction of parturition of ungulates.